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J. Phys. A: Math. Gen., Vol. 10, No. 2, 1977. Printed in Great Britain. @ 1977 

Corrigendum 

Mean number of clusters for percolation processes in two dimensions 
Domb C and Pearce C J 1976 J. Phys. A : Math. Gen. 9 L137-40 

From the expression on page L139 for the mean number of clusters 

k ~ ( p )  = n C + A ( p c - p )  + C(~c-p)~+DIpc-pI~’~+ a 

the analogue of the specific heat, d2kL(p)/dpz, may be seen to have a finite cusp at pc .  
For this case the appropriate form of the Rushbrooke-Kasteleyn-Fortuin inequality 
becomes 2pp+yb32 ,  and the inequality obtained for yb should be modified to 
yf .3  1.724*0*014. 
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